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Signatures of spin blockade in the optical response of a charged quantum dot
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We model spin blockade for optically excited electrons in a charged semiconductor quantum dot. We study
the case in which the quantum dot is initially charged with a single electron and is then filled with an
additional, optically excited electron-hole pair, thus forming a charged exciton (trion). To make contact with
recent experiments, we model an optical pump-probe setup in which the two lowest quantum dot levels (s and p

shells) are photoexcited. Using the Lindblad master equation, we calculate the differential transmission spectrum
as a function of the pump-probe time delay. Taking into account both spin-conserving and spin-flip intraband
relaxation processes, we find that the presence of the ground state electron spin leads to an optical spin blockade at
short delay times which is visible as a crossover between two exponential decays of the differential transmission.
To make predictions for future experiments, we also study the dependence of the spin blockade on an external
magnetic field.

DOI: 10.1103/PhysRevB.86.045122 PACS number(s): 78.47.J−, 73.21.La, 78.67.Hc, 72.25.Fe

I. INTRODUCTION

One of the promising solid-state implementations for
the realization of quantum computing that has been under
intense study over the past years involves the use of a
single electron spin confined to a charged quantum dot
(QD).1 The discrete QD energy structure allows for long
spin lifetimes, e.g., exceeding 1 s in electrically defined
GaAs QDs,2 in comparison with the bulk materials or
semiconductor nanostructures of higher dimension. However,
it has been shown that the inhomogeneous dephasing time T ∗

2
in GaAs QDs in the presence of an unpolarized ensemble
of nuclear spins in the QD material is of the order of
∼10 ns, while the intrinsic spin coherence time T2 can reach
values beyond 1 μs.3 The decoherence time is relevant for
quantum information applications, where it should exceed the
elementary quantum gate operation time by a substantial factor.
Electrical control of single spins has been realized in time
scales of about 50–100 ns,4,5 while ultrafast optical pulses
have been shown to allow ensemble spin manipulation in
picosecond time scales6,7 and arbitrary coherent single-spin
rotations.8

Spin blockade, more generally known as Pauli blockade,
describes a situation in which an electronic process is inhibited
for certain spin configurations because the energetically
accessible final states are forbidden by the Pauli exclusion
principle (Fig. 1). In the electric transport between cou-
pled quantum dots, spin blockade can prevent an electron
from accessing an energetically favorable path due to spin
conservation9 [Fig. 1(a)]. Observations of the leakage current
in the spin-blocking regime have allowed the study of spin
decoherence mechanisms, and in particular the role of nuclear
spins.10,11

In optical experiments, Pauli blocking effects, also known
as phase-space filling,12 are commonly observed in absorption
spectra at high photoexcitation intensities or when ground
state carriers are present. Spin blockade of the lower Zeeman
branch in a singly charged QD in strong magnetic fields has
been studied,13 and in a recent pump-probe experiment,14

signatures of optical spin blockade have been observed in
the transmission spectra of a charged QD. Lifting of the spin

blockade is typically more difficult to observe for optically
excited carriers than for transport setups because electron-
hole recombination processes can be much faster than spin
coherence and relaxation times.

In this paper, we describe an optical spin blockade effect
in a charged quantum dot with two photoexcited energy levels
that play the role of the two coupled QDs in transport [see
Fig. 1(b)]. We show the signature of interlevel (intraband) spin
relaxation on the differential transmission signal in a pump-
probe setup, and we draw the analogies between optical and
transport experiments. The role of Coulomb interactions for
the pump-probe response from a quantum dot has been studied
previously.15 In the case of the charge-transport spin blockade,
interaction effects beyond simple charging energies turn out
not to play an essential role.2 Here, we find that interactions do
not essentially alter the optical spin blockade either. For small
QDs, the admixture mechanisms due to spin-orbit coupling
play a smaller role,16 and direct spin-phonon mechanisms
need to be taken into account. We show that they lead to
a suppression of the spin blockade effect at high magnetic
fields.

II. THEORETICAL MODEL

We study a quantum dot in a cubic semiconductor (e.g.,
GaAs) charged with a single electron. For self-assembled
quantum dots, lateral dimensions are significantly larger than
their height, and thus we assume a circular quantum dot in a
parabolic confinement potential characterized by a frequency
ω. In analogy with atoms, single-particle eigenstates in QDs
are typically labeled as s, p, d, . . . shell, which for our
model correspond to n = 0,1,2, . . . harmonic-oscillator states,
with n = nx + ny the total quantum number. Including spin,
single-particle states in the conduction band are degenerate
with respect to spin Jz = ±1/2 in the absence of a magnetic
field (for circular QDs). In the valence band, heavy-hole (total
angular momentum Jz = ±3/2) and light-hole (Jz = ±1/2)
states are split due to confinement by an energy �lh. Here,
we will consider only heavy-hole states, assuming that the
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FIG. 1. (Color online) (a) Spin blockade in charge transport
through a double QD, connected to source (S) and drain (D) leads.
A parallel spin configuration (spin triplet) can lead to a blocking
of the current. (b) The optical analogy of spin blockade in the
intraband relaxation between two QD levels s and p in a pump-probe
setup.

heavy-hole–light-hole mixing near the band edges can be
neglected.

The system is optically excited by a strong pump pulse
that is resonant to the first excited QD state (p shell),
creating an electron-hole (e-h) pair with specific angular
momentum depending on the pulse polarization. According
to the optical selection rules, a right (left) circularly polarized
σ± pulse excites a Jz = ∓1/2 electron and a Jz = ±3/2 hole,
creating an excited trion state (Fig. 2). Depending on the spin
polarization of the electrons, the (sp) trion state can be an
electron singlet (total trion angular momentum Jz = ±3/2) or
triplet (Jz = ±5/2, ± 3/2, ± 1/2).17 The singlet and triplet
states are split by an energy �ee due to electron-electron
exchange interactions, which is typically of the order of a
few meV. In our model, we assume that the pump pulse width
is much broader than the singlet-triplet splitting �ee and thus
the latter can be ignored.

We focus on the interlevel relaxation of the photoexcited
electron, i.e., relaxation from the (sp) trion state to the (ss)
trion (see Fig. 2). Since the latter can only be an electron
singlet, the relaxation rate depends strongly on the excited
trion state. If it is a spin singlet, interlevel relaxation takes
place through phonon emission on a time scale of a few tens

FIG. 2. (Color online) Energy levels of a charged quantum
dot under resonant photoexcitation with right (left) circularly (σ±)
polarized light of the first excited level (p shell), indicated by curved
blue arrows. The electron (hole) spin in the lowest QD level (s shell)
is denoted by ↑,↓ (⇑, ⇓), while ↑∗,↓∗ denotes an electron spin in the
excited QD level (p shell). Straight green arrows indicate relaxation
processes, with �c the intraband spin-conserving relaxation rate,
�s the intraband spin-flipping rate, and �rad the interband radiative
recombination rate.

of ns. On the other hand, if it is a spin triplet, a spin-flip
mechanism is required for the relaxation to take place. This
will typically involve spin-orbit coupling in combination with
phonon emission, and it will take a much longer time as
compared to the spin-conserving relaxation.

In our model, we use the Hamiltonian12

H = H0 + HL + HC, (1)

where

H0 =
∑
nσ

Ee
nσ ê†nσ ênσ +

∑
nσ

Eh
nσ ĥ†

nσ ĥnσ (2)

describes noninteracting electrons and holes, and

HL = −
∑
nσ

dE(t)ê†nσ ĥ
†
nσ̄ −

∑
nσ

d∗E∗(t)ĥnσ̄ ênσ (3)

is the coupling to the optical field, where ê
†
nσ (ĥ†

nσ ), ênσ (ĥnσ )
are the creation and annihilation operators of an electron (hole)
in the nth quantum dot level (n = s,p) with spin σ = ± 1

2 (σ =
± 3

2 ), Ee
nσ (Eh

nσ ) the single-particle energies of the QD levels,
d is the interband dipole moment, and E(t) is the electric field.
For a more compact notation, we use the notation σ̄ = ↑,↓
when σ = ↓,↑.

The last term in the Hamiltonian Eq. (1) describes Coulomb
interactions,

HC = 1

2

∑
nmσσ ′

V ee
nmê†nσ ê

†
mσ ′ êmσ ′ ênσ

+ 1

2

∑
nmσσ ′

V hh
nmĥ†

nσ ĥ
†
mσ ′ ĥmσ ′ ĥnσ

−
∑

nmσσ ′
V eh

nmê†nσ ĥ
†
mσ ′ ĥmσ ′ ênσ , (4)

where only terms that conserve the number of particles in each
QD level are included. This is a reasonable approximation
for very small QDs in which interlevel spacing is much
larger than the Coulomb interaction. Such terms lead to
density-dependent energy shifts, as we will discuss in the next
section.

Intraband relaxation of electrons from the p to the s shell
is described with the Lindblad operators

Le
σ1σ2

= ê†sσ1
êpσ2 . (5)

Similarly, hole relaxation is described by the operator

Lh
σ1σ2

= ĥ†
sσ1

ĥpσ2 . (6)

The dynamics of the density matrix ρ describing the electronic
state of the quantum dot is given by a master equation in the
Lindblad form (h̄ = 1 throughout the paper),

ρ̇ = −i[H,ρ] +
∑
σ1σ2r

�r
σ1σ2

[
Lr

σ1σ2
ρLr†

σ1σ2

− 1

2
Lr†

σ1σ2
Lr

σ1σ2
ρ − 1

2
ρLr†

σ1σ2
Lr

σ1σ2

]
, (7)

where r = e,h and

�e
σ1σ2

=
{
�c if σ1 = σ2

�s if σ1 
= σ2
(8)
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are phenomenological electron intraband spin-conserving and
spin-flip relaxation rates. In a recent pump-probe experiment
on a CdSe/ZnSe quantum dot,14 the two relaxation rates were
estimated to be of the order of �s ∼ 0.01 ps−1 and �c ∼
0.1 ps−1, respectively, corresponding to two well-separated
time scales.

Hole spin relaxation has been found to be much slower, of
the order of τ h

s = 1/�h
σ σ̄ ∼ 20 ns (Ref. 18) in both CdSe and

InAs quantum dots, and it can be safely ignored here. We will
only consider hole charge relaxation �h = �h

σσ .

III. EQUATIONS OF MOTION

To compare with pump-probe experiments, we calculate
the differential transmission signal �T/T ,

�T

T
(τ,ω) = Ton − Toff

Toff
∝ Im[P (3)(ω)], (9)

where Ton (Toff) is the probe pulse transmission coefficient
when the pump pulse is on (off), and P (3) is the induced
polarization in frequency space in third order in the optical
field.

The polarization is connected with the off-diagonal density
matrix elements

P = d
∑
nσ

Pnσ , (10)

where

Pnσ = 〈P̂nσ 〉 = 〈ĥnσ̄ ênσ 〉 ≡ Tr[ĥnσ̄ ênσ ρ] (11)

describes the interband excitation of an e-h pair in level n

with spins σ and σ̄ , respectively. Here, we have introduced
the average 〈· · ·〉 ≡ Tr[· · · ρ]. Using Eq. (7) with only two
QD levels (s and p) per band and factorizing all four-operator
expectation values within the Hartree-Fock approximation, the
polarization dynamics is described by

iṖnσ = (
Ee

nσ + Eh
nσ − V eh

nn − iγP

)
Pnσ

− dE(t)
(
1 − N e

nσ − Nh
nσ

)
+Pnσ

∑
mσ

′
Unm

(
N e

mσ ′ + Nh
mσ̄ ′

)

− i
Pnσ

2

∑
σ ′

�e
σσ ′

[
δnsN

e
pσ ′ + δnp

(
1 − N e

sσ ′
)]

− i
Pnσ

2
�h

[
δnsN

h
pσ̄ + δnp

(
1 − Nh

sσ̄

)]
, (12)

where

N e
nσ = 〈ê†nσ ênσ 〉, Nh

nσ = 〈ĥ†
nσ ĥnσ 〉, (13)

are electron and hole populations, and we have defined Unm =
V ee

nm − V eh
nm = V hh

nm − V eh
nm. The primed summation runs over all

states {mσ ′} 
= {nσ }, and polarization dephasing is described
with a phenomenological dephasing rate γP .

The first three terms of Eq. (12) correspond to the semi-
conductor Bloch equations.12 The second term is the standard
phase-space filling term due to Pauli blocking, while the
third term describes the renormalization of single-particle

energies due to Coulomb interactions. The last two terms
describe a population-dependent dephasing of polarization due
to electron and hole relaxation.

The dynamics of electron and hole populations is described
by similar equations of motion,

iṄ r
nσ = −iγNNr

nσ − dE(t)P ∗
nσ + d∗E∗(t)Pnσ

+ iδre

∑
σ1σ2

�e
σ1σ2

N e
pσ1

(
1 − N e

sσ2

)(
δnsδσ2σ − δnpδσ1σ

)
,

+ iδrh�hN
h
pσ

(
1 − Nh

sσ

)
(δns − δnp), (14)

with r = e,h and γN the population relaxation rate. Again,
the last two lines in Eq. (14) describe the effect of intraband
p → s shell relaxation.

Since in pump-probe experiments the measurable quantities
are at least third order in the optical field, the above equations
may be expanded in terms of increasing order in E(t),
i.e., Pnσ = P (1)

nσ + P (3)
nσ + O(E5) and Nr

nσ = Nr(0)
nσ + Nr(2)

nσ +
O(E4). Note that Nr(0)

nσ is essentially the ground state pop-
ulation, which vanishes for undoped systems. In our case,
assuming that the ground state electron lies in the lowest QD
level, Nr(0)

nσ = νr
nσ = δreδnsν

e
sσ , where νe

sσ is the s-shell filling
factor.

In this manner, we obtain a closed set of equations
up to third order in the optical field, which are written
explicitly in Appendix A. In the next section, we will discuss
their analytical and numerical solutions and calculate the
differential transmission signal.

IV. RESULTS AND DISCUSSION

A. Analytical solutions

The equations derived in the previous section can now be
solved numerically for any exciting laser field E(t). In the
special case of ultrashort pump and probe pulses that can
be described by δ functions, Eqs. (A1)–(A5) can be solved
analytically. Even though in this case all QD levels can be
excited (which is not the case in the experiment), analytical
expressions provide useful insight for the dynamics, and we
will discuss them briefly in this section.

We assume an optical field that consists of two laser pulses
propagating with time delay τ with respect to each other, i.e.,
it has the following form (at the QD):

E(t) = Eprobe(t) + Epump(t + τ ), (15)

where Ei(t) = Ei
0δ(t), i = pump,probe, and E

probe
0 (Epump

0 ) is
the amplitude of the probe (pump) pulse that arrives at the
system at time t = 0 (t = −τ ) (Fig. 3).

Using Eq. (15) in the equations of motion (for details, see
Appendix A), we obtain the interband polarization in first order
in the optical field,

P (1)
nσ (t) = id

(
1 − νe

nσ

)[
E

probe
0 e−iEnσ t e−γnσ t θ (t)

+E
pump
0 e−iEnσ (t+τ )e−γnσ (t+τ )θ (t + τ )

]
, (16)

045122-3



E. G. KAVOUSANAKI AND GUIDO BURKARD PHYSICAL REVIEW B 86, 045122 (2012)

FIG. 3. (Color online) Schematic representation of a typical
pump-probe setup. The system is photoexcited by a strong pump
pulse followed by a weaker probe pulse after time delay τ . The signal
emitted in the direction of the probe pulse is measured as a function
of τ .

which consists of two parts due to the two pulses in the optical
field.

For quantities that are second or third order in the optical
field, we will only retain terms that are up to first order in
the probe pulse, assuming that it is much weaker than the
pump (Eprobe

0 � E
pump
0 ). In this case, the solution for the hole

population, Eq. (A4), has the form

Nh(2)
nσ (t) = |d|2(1 − νe

nσ

)
E

pump
0

{
E

pump
0 e−γ Nh

n (t+τ )θ (t + τ )

+E
probe
0 eiEnσ τ e−γnσ |τ |[θ (τ )e−γ Nh

n t θ (t)

+ θ (−τ )e−γ Nh
n (t+τ )θ (t + τ )

]}
, (17)

which describes the creation of hole population in the nth shell
either from the pump pulse only or from both the pump and
probe pulses. Here we defined γ Nh

n = γN + (δnp − δns)�h.
For the electronic populations we obtain similar expres-

sions, but γN is replaced by a level-dependent relaxation
rate γ Ne

nσ = γN + δnp(νe
nσ̄ �c + νe

nσ �s) and there are additional
terms of the form

δns

∑
σ ′

(
e−γ Ne

sσ t − e
−γ Ne

pσ ′ t
)

that describe the rise of the s-shell electron population due to
interlevel relaxation. These terms also appear in the solution
for the third-order terms P (3)

nσ , and they lead to a spin-dependent
increase of the differential transmission signal as a function of
the time delay. The exact expressions for N e(2)

nσ and P (3)
nσ are

included in Appendix B.

B. Zero magnetic field

In this section, we discuss the results from our numerical
calculations of the differential transmission signal for Gaussian
pulses similar to the experiment of Ref. 14. Figure 4 shows
the imaginary part of the nonlinear polarization P (3)(ω) for the
case of an unpolarized ground state electron as a function of the
time delay τ between the pump and probe pulse and the probe
pulse energy. The parameters are taken from Ref. 14 except for
the hole relaxation, which we expect to be faster than all other
relevant relaxation mechanisms. At this point, Coulomb inter-
actions are neglected. There is a single peak at the s-shell trion
energy Es that increases with time delay for tens of picosec-
onds, in agreement with the experimental findings. This slow
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FIG. 4. (Color online) Differential transmission signal �T/T (in
arbitrary units) as a function of time delay τ and probe pulse energy
h̄ω for an unpolarized ground state electron, νe

s↑ = νe
s↓ = 0.5, and

linearly polarized Gaussian pulses with duration Tpump = 700 fs,
Tprobe = 180 fs. For this plot, we have used the parameters from
Ref. 14, Es = 2110 meV, Ep = 2210 meV, 1/γP = 5 ps, 1/�c =
15 ps, 1/�s = 170 ps, and 1/γN = 480 ps. Furthermore, we have
assumed fast hole relaxation, 1/�h = 0.1 ps, and for this plot we
have neglected Coulomb interactions, Unm = 0.

increase of the signal is a signature of intraband relaxation from
the p to the s shell, to which both spin-conserving and spin-
flipping mechanisms contribute, since the optical pulses are
linearly polarized and the ground state electron unpolarized.

Our results are consistent with those of Ref. 15, but we
focus on spin-dependent effects rather than the role of the
Coulomb interaction. In fact, we find that for the spin-related
effects of interest here, the Coulomb interaction does not play
an important role. The important physical mechanisms for the
optical spin blockade described here are the fast hole relaxation
and the spin relaxation mechanism in the conduction band.

A more detailed description of the dynamics is shown in
Fig. 5, which depicts snapshots of the signal for specific time
delays. For τ = −2 ps, for which the probe pulse precedes the
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FIG. 5. Differential transmission signal as a function of probe
pulse energy for different time delays τ . All parameters are as
in Fig. 4. The dashed line marks the signal right after excitation
by the pump pulse, which corresponds to bleaching due to hole
interlevel relaxation. The dotted line marks the expected signal for
full electronic relaxation.
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FIG. 6. Differential transmission signal as a function of probe
pulse energy for different time delays τ , including Coulomb interac-
tions (Unm = 0.1 meV). All other parameters are as in Fig. 4.

pump, there is a small signal that arises from the interference
between the two pulses and is characterized by oscillations
with frequency Ep − Es .

For τ = 2 ps, when the probe pulse arrives right after the
pump, the situation is different as the pump pulse has created
an e-h pair in the p shell. The hole relaxes almost immediately
to the s shell in the valence band, and as the probe pulse
arrives, it can either recombine with the ground state electron
or block the probe pulse absorption (bleaching), thus leading
to an increase in the transmission.

For τ = 20 ps, the electron has relaxed to the s shell only
if it is in the singlet configuration. Given that only two of the
triplet states are bright, this leads to an additional increase of
the signal by a factor of ∼1.3 in comparison to the signal at
τ = 2 ps, which remains constant for tens of picoseconds until
a spin flip can take place.

In the above results, we have ignored the role of Coulomb
interactions. Their contribution is shown in Fig. 6, which shows
the differential transmission signal for the same parameters as
in Fig. 5, but with the additional terms arising from Coulomb
interactions. It is clear that their main effect is a shift of
the fundamental trion resonance for very short time scales,
but their role is diminished for larger time delays. This is
in agreement with the results of Ref. 15, where the role of
Coulomb correlations has been studied.

Figure 7(a) shows the effect of electron spin relaxation on
the differential transmission �T/T for a σ+ pump pulse and
a σ = ↓ ground state electron (in which case spin relaxation
is necessary for interlevel relaxation). For small delay times
τ , the slow spin-flip processes do not contribute and the signal
exhibits a sharp increase due to hole relaxation. At larger time
scales, the role of spin relaxation becomes evident by the
slow increase of the signal, the absolute maximum of which
depends on the spin relaxation rate. As shown by the dotted
line in Fig. 7(a), there is no increase of the signal in the absence
of spin relaxation.

On the other hand, hole relaxation plays an important role
at early time scales. This is shown in Fig. 7(b), where the
differential transmission signal is plotted for different values
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FIG. 7. (Color online) Differential transmission signal as a
function of time delay τ , (a) with and without the electron spin
relaxation and (b) with and without hole relaxation for a σ = ↓ ground
state electron and σ+ polarized pump pulse. All other parameters
are as in Fig. 4. The main features of these results are captured by
multiexponential decays, as discussed in the simple analytical model
in Sec. IV A.

of �h. In the absence of hole relaxation, the signal increases
slowly due to electron spin relaxation.

C. Finite magnetic field

In the presence of an external magnetic field, more
spin-relaxing mechanisms are allowed, thus enhancing the
spin-flipping relaxation rate. It has been shown in Ref. 16
that spin relaxation in QDs is produced by a variety of
mechanisms that can be separated in two groups: direct spin-
phonon coupling and admixture mechanisms due to spin-orbit
coupling. In both cases, however, the finite magnetic field
leads to a ∼B2 dependence of the spin relaxation rate between
different orbitals. For the quantum dots considered here14,19

and magnetic fields up to 5 T, Zeeman splitting is much smaller
(∼μeV) than the interlevel spacing (50–100 meV) and its role
is insignificant. Thus, the admixture of different spin states
plays a lesser role, and the dominant spin-flipping mechanism
is the direct spin-phonon coupling.

In Fig. 8, the differential transmission signal at the s-shell
resonance is shown as a function of time delay τ and magnetic
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FIG. 8. (Color online) Differential transmission �T/T as a
function of pump-probe delay time τ and magnetic field B for a
circularly polarized (a) σ+ and (b) σ− pump pulse. We assume the
temperature is low enough for the ground state electron to be polarized
νe

s↑ = 1. All other parameters are as in Fig. 4. In (b), spin blockade is
present at low magnetic fields and is lifted at higher fields, while in
(a) the only change in the signal arises from a shift out of resonance
of the fundamental trion energy level at high magnetic fields.

field B for right and left circularly polarized pump pulses.
Assuming that the temperature is low enough for the ground
state electron to be fully polarized by the applied magnetic
field, a σ− pulse leads to a well defined spin blockade
regime, as shown in Fig. 8(b). For low magnetic fields, the
differential transmission signal is much smaller in comparison
to Fig. 8(a), where spin-conserving relaxation took place.
However, due to the ∼B2 enhancement of the spin-flipping
rate, at larger magnetic field spin blockade is suppressed.
This is in contrast with transport experiments, in which
the application of an external magnetic field suppresses the
singlet-triplet mixing and thus enhances the spin blockade
effect.10

V. CONCLUSIONS

We have developed a model describing the trion and
population dynamics in a photoexcited quantum dot in a
pump-probe setup. We have included the role of intersubband
relaxation including spin flipping, and we separated its role
from the spin-conserving mechanism. The long time scale of
intraband spin relaxation leads to a signature in the differential

transmission signal that is analogous to optical spin blockade.
In the presence of an external magnetic field, the enhancement
of the spin-flipping relaxation rate leads to a lifting of spin
blockade at shorter time scales. This mechanism opens new
possibilities for the study of spin decoherence processes in
semiconductor quantum dots with optical probes.
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APPENDIX A: EQUATIONS OF MOTION

Here we write a set of equations, derived from Eqs. (12)
and (14), expanded in increasing orders of the optical field.
Keeping terms up to first order, Eq. (12) for the polarization
becomes

iṖ (1)
nσ = (Enσ − iγnσ )P (1)

sσ − dE(t)
(
1 − νe

nσ

)
, (A1)

where Enσ = Ee
nσ + Eh

nσ − V eh
nn + Uns is the trion energy and

γnσ = γP + δnp(�cν
e
sσ̄ + �sν

e
sσ + �h)/2 describes the trion

relaxation rate, which for the p shell is enhanced by
the intraband spin-conserving and spin-flipping relaxation
terms.

In second order in the optical field, the equations of motion
for the electron and hole populations are

iṄ e(2)
sσ = −iγNN e(2)

sσ − dE(t)P (1)∗
sσ + d∗E∗(t)P (1)

sσ

+ i
(
1 − νe

sσ

)[
�cN

e(2)
pσ + �sN

e(2)
pσ̄

]
, (A2)

iṄ e(2)
pσ = −i

[
γN + (

1 − νe
sσ

)
�c + (

1 − νe
sσ̄

)
�s

]
N e(2)

pσ

− dE(t)P (1)∗
pσ + d∗E∗(t)P (1)

pσ , (A3)

iṄh(2)
nσ = −i[γN + (δnp − δns)�h]Nh(2)

nσ

− dE(t)P (1)∗
nσ + d∗E∗(t)P (1)

nσ . (A4)

Finally, for the polarization in third order, we obtain

iṖ (3)
nσ = (Enσ − iγnσ )P (3)

nσ + dE(t)
[
N e(2)

nσ + Nh(2)
nσ

]
+P (1)

nσ

∑
mσ

′
Unm

(
N

e(2)
mσ ′ + N

h(2)
mσ ′

)

+ i
1

2
P (1)

nσ �h(δnp − δns)N
h(2)
n̄σ̄

+ i
1

2
P (1)

nσ

∑
σ ′

�e
σσ ′

(
δnpN

e(2)
sσ ′ − δnsN

e(2)
pσ ′

)
. (A5)

The last term in the above equation describes contributions
from interlevel relaxation of electronic populations, which, as
discussed in Sec. IV, leads to spin-dependent signatures in the
differential transmission signal.
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APPENDIX B: ANALYTICAL SOLUTIONS

The solution for the electronic populations has the form

N e(2)
nσ (t) = |d|2(Epump

0

)2(
1 − νe

nσ

)
θ (t + τ )

{
e−γ Ne

nσ (t+τ ) + δns

∑
σ ′

aσσ ′
[
e−γ Ne

sσ (t+τ ) − e
−γ Ne

pσ ′ (t+τ )]}

+ 2|d|2Epump
0 E

probe
0

(
1 − νe

nσ

){
cos(Enσ τ )e−γnσ |τ |[e−γ Ne

nσ t θ (τ )θ (t) + e−γ Ne
nσ (t+τ )θ (−τ )θ (t + τ )

]

+ δns

∑
σ ′

aσσ ′ cos(Epσ ′τ )e−γpσ ′ |τ |[θ (τ )θ (t)
(
e−γ Ne

sσ t − e
−γ Ne

pσ ′ t
) + θ (−τ )θ (t + τ )

(
e−γ Ne

sσ (t+τ ) − e
−γ Ne

pσ ′ (t+τ ))]}
, (B1)

where γ Ne
nσ = γN + δnp(νe

nσ̄ �c + νe
nσ�s) and aσσ ′ = �σσ ′

sp /(νe
sσ̄ ′�c + νe

sσ ′�s). Comparing the above expression with the solution
for the hole populations, Eq. (17), there are additional terms (∝δns) that describe the creation of electronic population in the s

shell due to intraband relaxation.
The solution for the third-order terms P (3)

nσ , which contribute to the differential transmission signal, is given by (for Unm = 0)

P (3)
nσ (ω) = (

1 − νe
nσ

)dE
probe
0

(
E

pump
0

)2

ω − Enσ + iγnσ

[
|d|2(e−γ Nh

n τ + e−γ Ne
nσ τ

) + δns

∑
σ ′

aσσ ′
(
e−γ Ne

sσ τ − e
−γ Ne

pσ ′ τ
)

+ 1

2
i(δns − δnp)

∑
σ ′

�σσ ′
sp |d|2

ω − Enσ + i
(
γnσ + γ Ne

pσ ′
)(

e
−γ Ne

pσ ′ τ + e−i(Enσ −Epσ ′ )τ e
−(γnσ +γ Ne

pσ ′ )τ
)]

(B2)

for τ > 0, and

P (3)
nσ (ω) = (1 − νe

nσ )
dE

probe
0 (Epump

0 )2

ω − Enσ + iγnσ

[|d|2(e−i(ω−Enσ )τ eγnσ τ ) + 1

2
i(δns − δnp)

∑
σ ′

�σσ ′
sp |d|2e−i(ω−Epσ ′ )τ

ω − Enσ + i(γnσ + γ Ne
pσ ′)

(eγnσ τ + eγpσ ′ τ )] (B3)

for τ < 0. Given that γnσ � γ Ne
nσ , it is clear from the above solution that the differential transmission signal decays fast for τ < 0,

while for τ > 0 it is dominated by the ∼e−γ Ne
nσ τ term at long time scales, leading to spin-dependent decay.
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